
陆全勇
研究员
量子材料与器件研究部
Office 505
Email:luqy@baqis.ac.cn
研究团队: 光量子通信与器件团队
陆全勇,2010年于中国科学院半导体研究所获得博士学位,同年加入美国西北大学历任博士后和研究助理教授。2020年任美国应用光电子有限公司高级研发芯片工程师。2021年底加入北京量子信息科学研究院任研究员。
陆全勇致力于现代半导体量子光源及系统的研究,包括激光器,光频梳,单光子源等,先后研制出第一支室温连续输出的太赫兹半导体差频光源(2014, APL),第一支室温工作的太赫兹半导体差频光频梳(2019,Nature Comm.),室温连续功率最高的中红外半导体激光光源(2019,OE)、室温连续功率最高的单模半导体红外激光光源(2020,OE)、以及50GHz带宽的电致吸收高速调制通信激光器等。
代表性论文/成果:
1. Q. Y. Lu, S. Slivken, D. Wu, and M. Razeghi “High power continuous wave operation of single mode quantum cascade lasers up to 5 W spanning λ~3.8-8.3 μm,” Opt. Express 28, 15181-15188 (2020). (Featured in OSA Spotlight on Optics)
2. Q. Y. Lu, F. H. Wang, D. Wu, S. Slivken, and M. Razeghi “Room temperature semiconductor terahertz frequency comb,” Nature Communications, 10, 2403 (2019). (Highlighted in Nature Photonics: doi.org/10.1038/s41566-019-0484-5).
3. W. Zhou*, Q. Y. Lu*, D. Wu, S. Slivken, and M. Razeghi “High-power, continuous-wave, phase-locked quantum cascade laser arrays emitting at 8 μm,” Optics Express, 27, 15776 (2019). (* equal contribution).
4. Q. Y. Lu, S. Manna, D. Wu, S. Slivken, and M. Razeghi “Shortwave quantum cascade laser frequency comb for multi-heterodyne spectroscopy,” Appl. Phys. Lett. 112, 141104 (2018).
5. Q. Y. Lu, S. Manna, S. Slivken, D. Wu, and M. Razeghi “Dispersion compensated quantum cascade laser frequency comb with high power output,” AIP Advances, 7, 045313 (2017).
6. Q. Y. Lu, D. Wu, S. Slivken, and M. Razeghi “High efficiency quantum cascade laser frequency comb,” Scientific Reports, 7, 43806 (2017).
7. Q. Y. Lu and M. Razeghi “Recent Advances in Room Temperature, High-Power Terahertz Quantum Cascade Laser Sources Based on Difference-Frequency Generation,” Photonics, 3, 42 (2016). (Invited Review).
8. Q. Y. Lu, D. Wu, S. Sengupta, S. Slivken, and M. Razeghi “Room temperature continuous wave, monolithic tunable THz sources based on highly efficient mid-infrared quantum cascade lasers,” Scientific Reports, 6, 23595 (2016).
9. M. Razeghi, Q. Y. Lu, N. Bandyopadhyay, W. Zhou, D. Heydari, Y. Bai, and S. Slivken, “Quantum cascade lasers: from tool to product,” Opt. Express 23, 8462-8475 (2015). (Invited Review). (Most cited 15 papers in 2015 of Opt. Express)
10. Q. Y. Lu, M. Razeghi S. Slivken, N. Bandyopadhyay, Y. Bai, W.J. Zhou, M. Chen, D. Heydari, A. Haddadi, R. McClintock, M. Amanti, and C. Sirtori, “High power frequency comb based on mid-infrared quantum cascade laser at λ~ 9 μm,” Appl. Phys. Lett. 106, 051105 (2015).
11. Q. Y. Lu, S. Slivken, N. Bandyopadhyay, Y. Bai, and M. Razeghi, “Widely tunable room temperature semiconductor terahertz source,” Appl. Phys. Lett. 105, 221102 (2014).
12. Q. Y. Lu, N. Bandyopadhyay, S. Slivken, Y. Bai, and M. Razeghi, “Continuous operation of a monolithic semiconductor terahertz source at room temperature,” Appl. Phys. Lett. 104, 221105 (2014). (This work is also highlighted in Nature Photonics: doi:10.1038/nphoton.2014.185)
13. Q. Y. Lu, N. Bandyopadhyay, S. Slivken, Y. Bai, and M. Razeghi, “Room temperature terahertz quantum cascade laser sources with 215 μW output power through epilayer-down mounting,” Appl. Phys. Lett. 103, 011101 (2013).
14. Q. Y. Lu, N. Bandyopadhyay, S. Slivken, Y. Bai, and M. Razeghi, “High performance terahertz quantum cascade laser sources based on intracavity difference frequency generation,” Opt. Express 21, 968-973 (2013).
15. Q. Y. Lu, N. Bandyopadhyay, S. Slivken, Y. Bai, and M. Razeghi, “Widely tuned room temperature terahertz quantum cascade laser sources based on difference-frequency generation,” Appl. Phys. Lett. 101, 251121 (2012).
16. Q. Y. Lu, N. Bandyopadhyay, S. Slivken, Y. Bai, and M. Razeghi, “Room temperature single-mode terahertz sources based on intracavity difference- frequency generation in quantum cascade lasers,” Appl. Phys. Lett. 99, 131106 (2011).
17. Q. Y. Lu, Y. Bai, N. Bandyopadhyay, S. Slivken, and M. Razeghi, “2.4 W room temperature continuous wave operation of distributed feedback quantum cascade lasers,” Appl. Phys. Lett. 98, 181106 (2011).
18. Q. Y. Lu, Y. Bai, N. Bandyopadhyay, S. Slivken, and M. Razeghi, “Room-temperature continuous wave operation of distributed feedback quantum cascade lasers with watt-level power output,” Appl. Phys. Lett. 97, 231119 (2010).
19. Q. Y. Lu, W. H. Guo, W. Zhang, L. J. Wang, J. Q. Liu, L. Li, F. Q. Liu, and Z. G. Wang, “Room temperature operation of photonic crystal distributed feedback quantum cascade lasers with single longitudinal and lateral mode performance,” Appl. Phys. Lett. 96, 051112 (2010).
20. Q. Y. Lu, W. Zhang, L. J. Wang, J. Q. Liu, L. Li, F. Q. Liu, and Z. G. Wang, “Holographic fabricated photonic-crystal distributed-feedback quantum cascade laser with near-diffraction- limited beam quality,” Opt. Express 17, 18900-18905 (2009).